
April 26, 2021

SYCL 2020 in hipSYCL
DPC++ features on AMD GPUs, NVIDIA GPUs and CPUs

Aksel Alpay
Heidelberg University

1 / 19



Introduction to hipSYCL

hipSYCL
A generic, multi-backend SYCL
implementation with emphasis on
aggregating existing toolchains.

I Source-compatible with
vendor-specific programming
models

I Unique extensions, e.g. full
buffer-USM interoperability

2 / 19



hipSYCL: Multiple toolchains
in one.

I syclcc -O3 --hipsycl-targets="omp;cuda:sm_70;hip:gfx906" test.cpp
I CMake integration available: find_package(hipSYCL), add_sycl_to_target()

3 / 19



hipSYCL runtime architecture

4 / 19



SYCL 2020: Simple things
are simple now

1 using namespace access;
2 queue q;
3 {
4 buffer<int> a{input_a, size}
5 buffer<int> b{input_b, size};
6 buffer<int> c{output, size};
7 q.submit([&](handler& cgh){
8 auto aa=a.get_access <mode::read>();
9 auto ab=b.get_access <mode::read>();

10 auto ac=c.get_access <mode::write >();
11 cgh.parallel_for <class name>(size

,[=](sycl::idx<1> i){
12 ac[i] = aa[i] + ab[i];
13 });
14 });
15 }

1 queue q;
2 int* a=malloc_shared <int>(size);
3 int* b=malloc_shared <int>(size);
4 int* c=malloc_shared <int>(size);
5 //TODO: Fill input a,b
6 q.parallel_for(size ,[=](id<1> i){
7 c[i] = a[i] + b[i];
8 }).wait();

5 / 19



SYCL 2020 in hipSYCL

https://github.com/hipSYCL/featuresupport 6 / 19



Key DPC++/SYCL 2020 fea-
tures implemented

Our work as oneAPI Center of Excellence:
I Unified Shared Memory

(USM)
I Optional Lambda Naming
I Subgroups
I Parallel algorithms for

groups and subgroups

I Parallel reductions
I Queue shortcuts
I Explicit task graphs
I …

hipSYCL support increases adoption and portability of SYCL 2020 features
(e.g. AMD GPUs)

7 / 19



Frontier, El Capitan, LUMI

Bring SYCL 2020 to upcoming supercomputers based on AMD GPUs

8 / 19



From DPC++ extensions to
SYCL 2020

I SYCL 2020 interfaces in current implementations and client code may vary
I hipSYCL interfaces started with SYCL 2020 provisional, now moving towards

SYCL 2020 final 9 / 19



Unified Shared Memory in
hipSYCL

I Device-accessible host memory
I Explicit USM
I Shared allocations (on-demand

migration)
I Performance hints

(prefetch/memadvise)

1 sycl::queue q;
2 int* ptr =
3 sycl::malloc_shared <int>(size,q)
4 q.parallel_for(size,
5 [=](sycl::id<1> idx){
6 const int i = idx.get(0);
7 ptr[i] = i;
8 });

CUDA
cudaMallocHost
cudaMalloc
cudaMallocManaged
cudaMemPrefetchAsync
cudaMemAdvise

HIP
hipHostMalloc
hipMalloc
hipMallocManaged
hipMemPrefetchAsync
hipMemAdvise

CPU
(regular host alloca-
tions)

10 / 19



hipSYCL USM performance

Parallel research kernels benchmarks1

ROCm does not yet fully support allocations with on-demand page migration.

1https://github.com/ParRes/Kernels
11 / 19



Subgroups

I Expose hardware below work group
granularity

I SIMD units
I Useful for optimization

1 sycl::nd_item <1> idx = ...;
2 auto sgrp = idx.get_sub_group();

CUDA
Mapped to CUDA
warps

HIP
Mapped to AMD wave-
fronts

CPU
Individual subgroup for
each work item
I Difficult for

library-only CPU
backends

I Vectorization
controlled by
OpenMP compiler

12 / 19



Group algorithms in hipSYCL

I any_of, none_of, all_of

I Reductions, scans
I broadcast, barrier
I At work group and subgroup level
I Collective and Iterator-based variants

1 int myval = ...;
2 int sum=sycl::reduce_over_group(
3 group, myval, sycl::plus<int>{})

CUDA
I Subgroup

intrinsics, warp
shuffles

I Optimized local
memory usage

HIP
I Subgroup

intrinsics, warp
shuffles

I Optimized local
memory usage

CPU
I Sequential with

OpenMP
vectorization

I Bound by
synchronization

13 / 19



Group reduce and scan on
AMD Radeon VII

I Competitive performance compared to rocPRIM
I We are handicapped: Group size not known at compile time

Wünsche, H. (2021): “SYCL 2020 work group parallel primitives […] in hipSYCL”. Bachelor Thesis. Heidelberg U.
14 / 19



Parallel reductions

I Variadic scalar reductions
I basic, nd_range, hierarchical and

scoped parallelism supported
I No multi-dimensional reductions yet
I Huge optimization space!

1 q.parallel_for(range{size},
2 reduction(output,
3 sycl::plus<int>{}),
4 [=](sycl::id<1> idx,
5 auto& reducer){
6 int myvalue = ...;
7 reducer += myvalue;
8 });

CUDA

I Work group
reductions

I Multiple kernel
launches

HIP

I Work group
reductions

I Multiple kernel
launches

CPU
I Per-thread reductions to

cache-line aligned
private storage

I Cross-thread final
reduction

15 / 19



Reduction performance

I hipSYCL reduction performance can compete with vendor-optimized libraries

I SYCL model is very flexible and allows for more user control – and user error!

I For pure reductions, we still need optimized SYCL libraries!
16 / 19



oneAPI libraries

The language is only half the way for oneAPI portability! We need the
libraries.

I oneMKL: hipSYCL (and rocBLAS) support currently WIP
I oneDPL: Most unit tests already run with hipSYCL2

2https://github.com/hipSYCL/oneDPL
17 / 19



Case study: oneDPL

What was necessary to port oneDPL to hipSYCL?
I Build system
I SYCL compiler detection/macros
I pre-SYCL 2020 final APIs:

I ONEAPI namespace for reductions/group algorithms
I noinit vs no_init property

I DPC++ implementation details
I mode_tag_t

I Optimize work group size selection for hipSYCL

I No functional changes
I Single file with some compatibility aliases

18 / 19



Conclusion

I Rapidly moving towards SYCL 2020
I Key features supported - high performance implementations for all backends.
It is possible to write standard SYCL 2020/DPC++ code, be portable without
sacrificing performance w.r.t vendor-optimized libraries!

I Make SYCL 2020 ubiquitous - let DPC++/SYCL 2020 code run on AMD GPUs,
NVIDIA GPUs, any CPU

I Ongoing work: oneMKL, oneDPL, other SYCL 2020 features, more
optimizations…

I Open source: https://github.com/illuhad/hipSYCL
I Get in touch: aksel.alpay@uni-heidelberg.de

19 / 19


